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Abstract. We generalize the fusion procedure for the A
(1)
N−1 open spin chain (N > 2) and we

show that the transfer matrix satisfies a crossing property. We use these results to solve the A(1)
N−1

open spin chain with Uq(SU(N )) symmetry by means of the analytical Bethe ansatz method. Our
results coincide with the known ones obtained via the nested Bethe ansatz.

1. Introduction

We consider the A
(1)
N−1 [1, 2] open spin chain (N > 2) with N sites. This is an integrable

system which has been solved by means of the nested Bethe ansatz [3, 4]. Also, this model,
in the critical regime, can be thought as the lattice analogue of a certain two-dimensional field
theory, i.e. the A(1)

N−1 affine Toda field theory [5]. We focus here on the special case where the
chain has Uq(SU(N )) symmetry [6,7], and we solve it using a simpler method compared with
nesting, namely, the analytical Bethe ansatz [8, 9].

The analytical Bethe ansatz has been used for models with crossing symmetry, e.g. A(1)
1 ,

A
(1)
2n (see [9, 10]). This is the first time that this method has been used for a model without

crossing symmetry, i.e. theA(1)
N−1 open spin chain. Although this spin chain does not have such

symmetry, the correspondingR-matrix satisfies a crossing property [11–14], and consequently
one can show that the transfer matrix satisfies an analogous property. One can also generalize
the results of [15,16] and derive a fusion procedure for the corresponding open chain transfer
matrix. The crossing property, the fusion of the transfer matrix and the quantum group
symmetry play an essential role in the derivation of the analytical Bethe ansatz.

The outline of the paper is as follows. In section 2 we describe the model and we
derive the crossing property for the R-matrix and the transfer matrix. In the next section
we deduce the fusion procedure for the open chain transfer matrix. In section 4 we derive
the asymptotic behaviour of the transfer matrix and together with the results of the previous
sections, periodicity and analyticity we find the spectrum of the transfer matrix and the Bethe
ansatz equations. We illustrate the method using theA(1)

2 chain, but the results can nevertheless
be generalized for any N . Finally, in the last section we give a brief discussion of the results
of this work.

2. The model

There are two basic building blocks for constructing open spin chains:

0305-4470/00/264755+11$30.00 © 2000 IOP Publishing Ltd 4755
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(1) The R-matrix, which is a solution of the Yang–Baxter equation

R12(λ1 − λ2) R13(λ1)R23(λ2) = R23(λ2) R13(λ1)R12(λ1 − λ2) (2.1)

(see, e.g., [17]). We assume that the R-matrix has the unitarity property

R12(λ)R21(−λ) = ζ(λ) (2.2)

where R21(λ) = P12R12(λ)P12 = R12(λ)
t1t2 , t denotes transpose and P is the permutation

matrix, and also the property [18]

R12(λ)
t1M1R12(−λ − 2ρ)t2M−1

1 = ζ ′(λ) (2.3)

with Mt = M ,

[M1M2, R12(λ)] = 0 (2.4)

and

ζ(λ) = sinhµ(λ + i) sinhµ(−λ + i) ζ ′(λ) = sinhµ(λ + ρ) sinhµ(−λ + ρ). (2.5)

For the purposes of this work we are going to need also theR-matrix that involves different
representations of Uq(SU(N )) [19, 20], in particular, N and N̄ . This matrix is given by
crossing

R1̄2(λ) = V1 R12(−λ − ρ)t2 V1 = V
t2

2 R12(−λ − ρ)t1 V
t2

2 (2.6)

where V 2 = 1 and M = V tV , for the A
(1)
1 case R1̄2(λ) = R12(λ). R1̄2(λ) also satisfies

the unitarity property,

R1̄2(λ)R21̄(−λ) = ζ ′(λ) (2.7)

this equation is equivalent to (2.3), with R21̄(λ) = R1̄2(λ)
t1t2 . Moreover

R1̄2(λ)
t1M1R1̄2(−λ − 2ρ)t2M−1

1 = ζ(λ) (2.8)

which is equivalent to (2.2). R1̄2(λ) is also a solution of the Yang–Baxter equation

R1̄2(λ1 − λ2)R1̄3(λ1)R23(λ2) = R23(λ2)R1̄3(λ1)R1̄2(λ1 − λ2). (2.9)

(2) The matricesK− andK+, which are solutions of the boundary Yang–Baxter equation [21]:

R12(λ1 − λ2)K
−
1 (λ1)R21(λ1 + λ2)K

−
2 (λ2)

= K−
2 (λ2) R12(λ1 + λ2)K

−
1 (λ1) R21(λ1 − λ2) (2.10)

and

R12(−λ1 + λ2)K
+
1 (λ1)

t1M−1
1 R21(−λ1 − λ2 − 2ρ)M1K

+
2 (λ2)

t2

= K+
2 (λ2)

t2 M1R12(−λ1 − λ2 − 2ρ) M−1
1 K+

1 (λ1)
t1R21(−λ1 + λ2). (2.11)

There exists an automorphism between K− and K+, i.e.

K+(λ) = MK−(−λ − ρ)t . (2.12)

For the following we are going to need a reflection equation that involves R1̄2 as well, in
particular,

R1̄2(λ1 − λ2)K
−
1̄
(λ1)R21̄(λ1 + λ2) K

−
2 (λ2)

= K−
2 (λ2)R1̄2(λ1 + λ2)K

−
1̄
(λ1)R21̄(λ1 − λ2) (2.13)

and

R1̄2(−λ1 + λ2)K
+
1̄ (λ1)

t1M−1
1 R21̄(−λ1 − λ2 − 2ρ)M1K2(λ2)

t2

= K+
2 (λ2)

t2M1R1̄2(−λ1 − λ2 − 2ρ)M−1
1 K+

1̄ (λ1)
t1R21̄(−λ1 + λ2). (2.14)

In the scattering language if we think that theKi matrix describes the scattering of a soliton
with the boundary, then Kī describes the scattering of an anti-soliton with the boundary.
Subsequently R1̄2 describes the scattering of a soliton with an anti-soliton.
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The corresponding transfer matrix t (λ) for an open chain of N spins is given by [22, 23]

t (λ) = tr0 K
+
0 (λ)T0(λ)K

−
0 (λ)T̂0(λ) (2.15)

where tr0 denotes the trace over the ‘auxiliary space’ 0, T0(λ) is the monodromy matrix

T0(λ) = R0N(λ) . . . R01(λ) (2.16)

and T̂0(λ) is given by

T̂0(λ) = R10(λ) . . . RN0(λ). (2.17)

(As is customary, we usually suppress the ‘quantum-space’ subscripts 1, . . . , N .) Indeed, it
can be shown that this transfer matrix has the commutativity property

[t (λ), t (λ′)] = 0. (2.18)

In this paper, we consider the case of the A(1)
N−1 R-matrix [24]

R12(λ)jj ,jj = sinhµ(λ + i)

R12(λ)jk,jk = sinh(µλ) j �= k

R12(λ)jk,kj = sinh(iµ)eµλsign(j−k) j �= k

1 � j k � N

(2.19)

which depends on the anisotropy parameter µ � 0, and which becomes SU(N ) invariant for
µ → 0. This R-matrix has the properties (2.2) and (2.3), with [25]

Mjk = δjke
−iµ(N−2j+1) ρ = iN/2. (2.20)

The corresponding open spin chain Hamiltonian H for K−(λ) = 1 and K+(λ) = M is

H =
N−1∑
n=1

Hnn+1 +
tr0 M0HN0

tr M
(2.21)

where the two-site Hamiltonian Hjk is given by

Hjk = i

2
Pjk

d

dλ
Rjk(λ)

∣∣∣∣
λ=0

. (2.22)

One can verify that the Hamiltonian is Hermitian.
We consider the case where K−(λ) = 1 and K+(λ) = M , and so the transfer matrix is

Uq(SU(N )) invariant [6,7]. Following [9] we show that the transfer matrix satisfies a crossing
property. To prove the crossing property we need (2.1), (2.3) and the following identity:

P t2
12M2 R12(λ)

t1 = R12(λ)
t1M−1

1 P t2
12. (2.23)

It is important to mention that in order to show (2.23) we considered the ‘unusual’ reflection
equation (2.13) for λ1 − λ2 = −ρ. Then the crossing property for the transfer matrix is given
by

t (λ) = t̄ (−λ − ρ) (2.24)

where

t̄ (λ) = tr0 M0T0̄(λ)T̂0̄(λ) (2.25)

and

T0̄(λ) = R0̄N(λ) . . . R0̄1(λ)

T̂0̄(λ) = R10̄(λ) . . . RN 0̄(λ).
(2.26)
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The proof of equation (2.24) follows exactly the proof in [9]. The only difference is that
in this case t̄ (λ) is involved as well because of (2.6). The transfer matrix t̄ (λ) satisfies the
commutativity property

[t̄ (λ), t̄(λ′)] = 0. (2.27)

Relation (2.24) is one of the basic results of this paper and it plays an essential role in the
derivation of the transfer matrix eigenvalues. The ‘new’ transfer matrix (see also, e.g., [19])
leads apparently to a non-local Hamiltonian; however, this is not a problem since t̄ (λ) has an
auxiliary character in our calculations as we shall see later.

3. Fusion

The fusion procedure for spin chains with crossing symmetry is known [16]. We generalize
this procedure for the case where the R-matrix does not have crossing symmetry. From now
on the indices 1 and 2 refer to the auxiliary space. We consider the equation (2.6) for λ = −ρ.
Then R1̄2(λ) degenerates to a projector onto a one-dimensional subspace

P−
1̄2

= 1

N V1P t2
12 V1. (3.1)

Also

P +
1̄2 = 1 − P−

1̄2
(3.2)

is a projector. We consider the Yang–Baxter equation (2.9) for λ = −ρ, then the fused
R-matrix is given by

R〈1̄2〉3(λ) = P +
1̄2R1̄3(λ)R23(λ + ρ)P +

1̄2

R〈21̄〉3(λ) = P +
21̄ R23(λ)R1̄3(λ + ρ)P +

21̄.
(3.3)

Also, one finds

R3〈1̄2〉(λ) = P +
1̄2R32(λ − ρ) R31̄(λ) P

+
1̄2

R3〈21̄〉(λ) = P +
21̄R31̄(λ − ρ)R32(λ)P

+
21̄.

(3.4)

Similarly, one can fuse the spaces 1 and 2̄. The fusedR-matrices obey the general Yang–Baxter
equation:

Rj1j2(λ1)Rj1j3(λ1 + λ2)Rj2j3(λ2) = Rj2j3(λ2) Rj1j3(λ1 + λ2)Rj1j2(λ1). (3.5)

Consider the reflection equation (2.13) for λ1 − λ2 = −ρ, then the fused K-matrices are
given by

K−
〈1̄2〉(λ) = P +

1̄2K
−
1̄
(λ)R21̄(2λ + ρ)K−

2 (λ + ρ)P +
21̄

K+
〈1̄2〉(λ)

t12 = P +
21̄K

+
1̄ (λ)

t1M2R21̄(−2λ − 3ρ)M−1
2 K+

2 (λ + ρ)t2P +
1̄2.

(3.6)

The above K-matrices obey the reflection equations:

R3〈1̄2〉(λ1 − λ2)K
−
3 (λ1)R〈1̄2〉3(λ1 + λ2) K

−
〈1̄2〉(λ2)

= K−
〈1̄2〉(λ2)R3〈21̄〉(λ1 + λ2 + ρ)K−

3 (λ1)R〈21̄〉3(λ1 − λ2 − ρ) (3.7)

and

R〈1̄2〉3(−λ1 + λ2)
t123K+

3 (λ1)
t3M−1

3 R3〈1̄2〉(−λ1 − λ2 − 2ρ)t123M3K
+
〈1̄2〉(λ2)

t12

= K+
〈1̄2〉(λ2)

t12M3R〈21̄〉3(−λ1 − λ2 − 3ρ)t123

×M−1
3 K+

3 (λ1)
t3R3〈21̄〉(−λ1 + λ2 + ρ)t123 . (3.8)
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Analogously we obtain the K〈12̄〉(λ)-matrices.
Having fused the R- and K-matrices we can show that the corresponding fused transfer

matrix is (for a detailed computation see, e.g., [16])

t̂ (λ) = ζ(2λ + 2ρ)t̄(λ)t (λ + ρ) − �[K+(λ)] δ[T (λ)]�[K−(λ)] δ[T̂ (λ)]. (3.9)

Notice that t̄ (λ) appears in the last equation as well as in (2.24). In this case we fuse the spaces
1̄2, and the quantum determinants are [16, 22]

δ[T (λ)] = tr12[P−
1̄2
T1̄(λ)T̂2(λ + ρ)]

δ[T̂ (λ)] = tr12[P−
21̄
T1̄(λ)T̂2(λ + ρ)]

�[K−(λ)] = tr12[P−
1̄2
K−

1 (λ)R21̄(2λ + ρ)K−
2 (λ + ρ)V1V2]

�[K+(λ)] = tr12[P−
1̄2
V1V2K

+
2 (λ + ρ)M−1

2 R1̄2(−2λ − 3ρ)M2 K
+
1 (λ)].

(3.10)

We can derive relations similar to (3.9) and (3.10) for the 12̄ fusion. Using unitarity and the
crossing property we prove the identities

P−
1̄2
R1̄m(λ)R2m(λ + ρ) P−

1̄2
= ζ(λ + ρ)P−

1̄2
P−

12̄
R1m(λ)R2̄m(λ + ρ)P−

12̄
= ζ ′(λ + ρ)P−

12̄
m = 1, 2, . . . , N

(3.11)

and by computing the quantum determinants explicitly we find

δ[T (λ)] = δ[T̂ (λ)] = ζ(λ + ρ)N or ζ ′(λ + ρ)N (3.12)

depending on the spaces we fuse, i.e. 1̄2 or 12̄ respectively. For the special caseK−(λ) = 1 and
K+(λ) = M , these are solutions of the reflection equations (2.13) and (2.14) correspondingly;
one can show from (3.10) that

�[K−(λ)] = g(2λ + ρ) �[K+(λ)] = g(−2λ − 3ρ) (3.13)

where

g(λ) = sinhµ(−λ + ρ). (3.14)

4. Analytical Bethe ansatz

We focus here on the simplest case, namely, the A
(1)
2 open chain. The asymptotic behaviour

of the R-matrix for λ → −∞ follows from (2.19):

R0k ∼ − 1
2 e−µλ


 e−iµS1,k pJ−

1,k pJ−
3,k

0 e−iµS2,k pJ−
2,k

0 0 e−iµS3,k




Rk0 ∼ − 1
2 e−µλ


 e−iµS1,k 0 0

pJ +
1,k e−iµS2,k 0

pJ +
3,k pJ +

2,k e−iµS3,k




(4.1)

where p = 2 sinh(−iµ), and the matrix elements are

Si = ei,i i = 1, 2, 3

J +
i = ei,i+1 J−

i = ei+1,i i = 1, 2

J +
3 = e1,3 J−

3 = e3,1

(4.2)

with

(ei,j )kl = δikδjl . (4.3)
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The leading asymptotic behaviour of the monodromy matrix is given by

T0(λ) ∼ (− 1
2 )

Ne−µλN

( e−iµS1 pJ −
1 pJ −

3
0 e−iµS2 pJ −

2
0 0 e−iµS3

)

T̂0(λ) ∼ (− 1
2 )

Ne−µλN

( e−iµS1 0 0
pJ +

1 e−iµS2 0
pJ +

3 pJ +
2 e−iµS3

) (4.4)

where

Si =
N∑
k=1

Si,k i = 1, 2, 3

J ±
1 =

N∑
k=1

e−iµS1,N . . . e−iµS1,k+1J±
1,ke

−iµS2,k−1 . . . e−iµS2,1

J ±
2 =

N∑
k=1

e−iµS2,N . . . e−iµS2,k+1J±
2,ke

−iµS3,k−1 . . . e−iµS3,1

J ±
3 =

N∑
k=1

(e−iµS1,N . . . e−iµS1,k+1J±
3,k + pJ ±

1,k+1J
±
2,k)e

−iµS3,k−1 . . . e−iµS3,1 .

(4.5)

Then from equation (2.15) for K−(λ) = 1 and K+(λ) = M , (2.20) and (4.4) we conclude that
the leading asymptotic behaviour of the transfer matrix has the following form:

t (λ) ∼ ( 1
2 )

2Ne−2µλN(e−2iµ−2iµS1 + e−2iµp2J −
1 J +

1 + e−2iµp2J −
3 J +

3

+e2iµ−2iµS3 + p2J −
2 J +

2 + e−2iµS2). (4.6)

We introduce the operators M1 and M2:

S1 = N − M1 S2 = M1 − M2 S3 = M2. (4.7)

We consider simultaneous eigenstates of Mi and the transfer matrix, i.e.

Mi |#(m)〉 = mi |#(m)〉 t (λ)|#(m)〉 = #(m)(λ)|#(m)〉 (4.8)

(to simplify our notation we write (m) instead of (m1m2)). We choose these states to be
annihilated by J +

i :

J +
i |#(m)〉 = 0. (4.9)

We conclude, from (4.6), (4.8) and (4.9), that the asymptotic behaviour of the corresponding
eigenvalue is given by

#(m)(λ) ∼ ( 1
2 )

2Ne−2µλN(e−2iµ(1+N−m1) + e2iµ(1−m2) + e−2iµ(m1−m2)). (4.10)

In order to determine the asymptotic behaviour of t̄ (λ), we also need the asymptotic behaviour
of R0̄k(λ)(Rk0̄(λ)) for λ → −∞:

R0̄k ∼ 1
2 e−µλ− 3iµ

2


 eiµS3,k qpJ−

2,k −q2pJ−
3,k

0 eiµS2,k qpJ−
1,k

0 0 eiµS1,k




Rk0̄ ∼ 1
2 e−µλ− 3iµ

2


 eiµS3,k 0 0

qpJ +
2,k eiµS2,k 0

−q2pJ +
3,k qpJ +

1,k eiµS1,k .




(4.11)

We define R0̄k(λ) from (2.6) using

V =
(

q

−1
q−1

)
(4.12)
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where q = eiµ, and the asymptotic behaviour of t̄ (λ) is given by

t̄ (λ) ∼ ( 1
2 )

2Ne−2µλN−3iµN(e2iµ+2iµS1 + e2iµp2J̄ −
1 J̄ +

1 + e2iµp2J̄ −
3 J̄ +

3

+e−2iµ+2iµS3 + p2J̄ −
2 J̄ +

2 + e2iµS2) (4.13)

with

J̄ ±
1 =

N∑
k=1

eiµS2,N . . . eiµS2,k+1J±
1,ke

iµS1,k−1 . . . eiµS1,1

J̄ ±
2 =

N∑
k=1

eiµS3,N . . . eiµS3,k+1J±
2,ke

iµS2,k−1 . . . eiµS2,1

J̄ ±
3 =

N∑
k=1

(eiµS3,N . . . eiµS3,k+1J±
3,k − pJ̄ ±

2,k+1J
±
1,k)e

iµS1,k−1 . . . eiµS1,1 .

(4.14)

The |#(m)〉 states are also annihilated by J̄ +
i , i.e.

J̄ +
i |#(m)〉 = 0 (4.15)

where the corresponding eigenvalue of t̄ (λ) is

#̄(m)(λ) ∼ ( 1
2 )

2Ne−2λµN−3iµN(e2iµ(1+N−m1) + e−2iµ(1−m2) + e2iµ(m1−m2)). (4.16)

We consider the state with all ‘spins’ up, i.e.

|#(0)〉 =
N⊗
k=1

|+〉(k). (4.17)

This is annihilated by J +
i and J̄ +

i , where (we suppress the (k) index):

|+〉 =
( 1

0
0

)
. (4.18)

We assume this is an eigenstate of the transfer matrix and it is also an eigenstate of t̄ (λ). The
action of the R-matrix on the |+〉 state gives lower and upper triangular matrices, i.e.

〈+|R0k(λ) = 〈+|
(

Ak 0 0
C1,k D1,k 0
C2,k D3,k D4,k

)

Rk0(λ)|+〉 =
(
Ak B1,k B2,k

0 D1,k D2,k

0 0 D4,k

)
|+〉

(4.19)

where the matrices A, Bi , Ci , Di act on the quantum space and they are determined by the
form of the R-matrix (2.19). Then the action of the transfer matrix on the pseudo-vacuum is

〈#(0)|T0(λ) = 〈#(0)|
( A 0 0

C1 D1 0
C2 D3 D4

)
T̂0(λ)|#(0)〉 =

(A B1 B2

0 D1 D2

0 0 D4

)
|#(0)〉 (4.20)

and the matrix elements are given by

A = AN . . . A1 D1 = D1,N . . . D1,1 D4 = D4,N . . . D4,1 (4.21)

C1 =
N∑
k=1

D1,N . . . D1,k+1C1,kAk−1 . . . A1 C0 = 0

D3 =
N∑
k=1

D4,N . . . D4,k+1D3,kD1,k−1 . . . D1,1 D3,0 = 0

C2 =
N∑
k=1

D4,N . . . D4,k+1(C2,kAk−1 . . . A1 + D3,kC1,k−1).

(4.22)
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Similarly, to find B1, B2 and D2 we replace C1, D3, C2 and C1 with B1, D2, B2 and B1

correspondingly. The transfer matrix eigenvalue for the pseudo-vacuum state is

#(0)(λ) = 〈#(0)|(e−2iµA2 + D2
1 + e2iµD2

4 + C1B1 + e2iµC2B2 + e2iµD3D2)|#(0)〉 (4.23)

and after some tedious algebra we find

#(0)(λ) = f (λ)

(
a(λ)2N sinh 2µ(λ + i)

sinh(2µλ)
+ b(λ)2N

(
1 +

sinhµ(2λ + i)

sinhµ(2λ + 3i)

))
. (4.24)

We make the assumption that a general eigenvalue has the form of a ‘dressed’ pseudo-vacuum
eigenvalue, i.e.

#(m)(λ) = f (λ)

(
a(λ)2N sinh 2µ(λ + i)

sinh(2µλ)
A1(λ) + b(λ)2N

(
A2(λ) +

sinhµ(2λ + i)

sinhµ(2λ + 3i)
A3(λ)

))
.

(4.25)

Again, the action of R0̄k(λ) on the |+〉 state gives upper and lower triangular matrices
(see (4.19)), so we find an analogous equation for #̄(m)(λ),

#̄(m)(λ) = f (λ)

(
ā(λ)2N sinhµ(2λ + i)

sinhµ(2λ + 3i)
Ā1(λ) + b̄(λ)2N

(
Ā2(λ) +

sinh 2µ(λ + i)

sinh(2µλ)
Ā3(λ)

))
(4.26)

(we suppress the (m) index from the ‘dressing’ functions), where

f (λ) = sinh(2µλ) sinhµ(2λ + 3i)

sinh 2µ(λ + i) sinhµ(2λ + i)
(4.27)

a(λ) = sinhµ(λ + i) b(λ) = sinh(µλ) (4.28)

and ā(λ), b̄(λ) are a(−λ − ρ), b(−λ − ρ), respectively. It is obvious that #(0)(λ) =
#̄(0)(−λ − ρ). From the asymptotic behaviour of the transfer matrix we conclude

A1(λ) → e2iµm1 A2(λ) → e2iµ(m2−m1) A3(λ) → e−2iµm2 (4.29)

and

Ā1(λ) → e−2iµm1 Ā2(λ) → e−2iµ(m2−m1) Ā3(λ) → e2iµm2 . (4.30)

We substitute the eigenvalues into the fusion equations (3.9) and we obtain conditions involving
A1, A3 and Ā1, Ā3. It is clear that #(0)(λ) satisfies (3.9), a fact that further supports our
assumption that |#(0)〉 is an eigenstate of the transfer matrices, t (λ) and t̄ (λ). From the fusion
equations we find that

A1(λ + ρ)Ā1(λ) = 1 Ā3(λ + ρ)A3(λ) = 1 (4.31)

where notice that we obtain two equations from (3.9), one from 1̄2 fusion and one from 12̄,
whereas e.g. for the A(1)

1 case we obtain only one such equation. From the crossing property
of the transfer matrix (2.24),

Ai(−λ − ρ) = Āi(λ) i = 1, 2, 3. (4.32)

Combining the last two conditions we find

A1(λ)A1(−λ) = 1 Ā3(λ)Ā3(−λ) = 1. (4.33)

Note that the previous equations mix the ‘dressing’ functions of #(m)(λ) and #̄(m)(λ), which
is expected because of the form of equations (2.24) and (3.9). In the case of a model with
crossing symmetry, e.g. A

(1)
1 , the two eigenvalues become degenerate. From the periodicity

of the transfer matrix

t

(
λ +

iπ

µ

)
= t (λ) (4.34)
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we expect the eigenvalues to be periodic as well. We impose that A2(λ) (Ā2(λ)) have the same
poles as A1(λ) and A3(λ) (Ā1(λ) and Ā3(λ)). Also. the residue of #(m)(#) at λ = −i should
vanish; thus we obtain the condition

A2(−i) = A3(−i).

We put all the above requirements together and we find that

A1(λ) =
m1∏
j=1

sinhµ(λ + λ
(1)
j )

sinhµ(λ + λ
(1)
j + i)

sinhµ(λ − λ
(1)
j − i)

sinhµ(λ − λ
(1)
j )

(4.35)

A2(λ) =
m1∏
j=1

sinhµ(λ + λ
(1)
j + 2i)

sinhµ(λ + λ
(1)
j + i)

sinhµ(λ − λ
(1)
j + i)

sinhµ(λ − λ
(1)
j )

×
m2∏
j=1

sinhµ(λ + λ
(2)
j + i)

sinhµ(λ + λ
(2)
j + 2i)

sinhµ(λ − λ
(2)
j − i)

sinhµ(λ − λ
(2)
j )

(4.36)

A3(λ) =
m2∏
j=1

sinhµ(λ + λ
(2)
j + 3i)

sinhµ(λ + λ
(2)
j + 2i)

sinhµ(λ − λ
(2)
j + i)

sinhµ(λ − λ
(2)
j )

. (4.37)

We obtain Āi(λ) from (4.32). It is easy to check that the eigenvalues satisfy all the above
conditions. Moreover, we want the eigenvalues to be analytical, so the poles must vanish.
This condition leads to the Bethe ansatz equations

e1(λ
(1)
i )2N =

m1∏
i �=j=1

e2(λ
(1)
i − λ

(1)
j )e2(λ

(1)
i + λ

(1)
j )

m2∏
j=1

e−1(λ
(1)
i − λ

(2)
j )e−1(λ

(1)
i + λ

(2)
j )

1 =
m2∏

i �=j=1

e2(λ
(2)
i − λ

(2)
j )e2(λ

(2)
i + λ

(2)
j )

m1∏
j=1

e−1(λ
(2)
i − λ

(1)
j )e−1(λ

(2)
i + λ

(1)
j )

(4.38)

where we have defined en(λ) as

en(λ) = sinhµ(λ + in
2 )

sinhµ(λ − in
2 )

. (4.39)

The exact computation for the general case becomes complicated; however, one can ‘guess’
the form of the general eigenvalue, having in mind all the conditions that it must satisfy. The
expression for the spectrum of the transfer matrix for any N is given by

#(m)(λ) ∝ b(λ)2N
N∑
k=1

sinh(2µλ)

sinhµ(2λ + (k − 1)i)

sinhµ(2λ + i)

sinhµ(2λ + ki)
Ak(λ) (4.40)

where

Ak(λ) =
mk−1∏
j=1

sinhµ(λ + λ
(k−1)
j + ki)

sinhµ(λ + λ
(k−1)
j + (k − 1)i)

sinhµ(λ − λ
(k−1)
j + i)

sinhµ(λ − λ
(k−1)
j )

×
mk∏
j=1

sinhµ(λ + λ
(k)
j + (k − 1)i)

sinhµ(λ + λ
(k)
j + ki)

sinhµ(λ − λ
(k)
j − i)

sinhµ(λ − λ
(k)
j )

k = 1, . . . ,N (4.41)

m0 = N and mN = 0. Also, #̄(m)(λ) = #(m)(−λ−ρ). The procedure we described uniquely
fixes the ‘dressing’ functions. By inspection we can verify that the above eigenvalues indeed
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satisfy all the requirements we derived previously, i.e. analyticity, asymptotic behaviour,
crossing etc, e.g.

Āk(λ) = Ak(−λ − ρ) k = 1, . . . ,N (4.42)

A1(λ)A1(−λ) = 1 ĀN (λ)ĀN (−λ) = 1. (4.43)

We can see from (4.41) that every two terms have the same poles. From the analyticity of the
eigenvalues we obtain the Bethe ansatz equations:

1 =
mk∏

i �=j=1

e2(λ
(k)
i − λ

(k)
j )e2(λ

(k)
i + λ

(k)
j )

mk+1∏
j=1

e−1(λ
(k)
i − λ

(k+1)
j )e−1(λ

(k)
i + λ

(k+1)
j )

×
mk−1∏
j=1

e−1(λ
(k)
i − λ

(k−1)
j )e−1(λ

(k)
i + λ

(k−1)
j ) k = 1, . . . ,N . (4.44)

For N = 3 we recover (4.38). The results, as expected, coincide with the known ones obtained
by nesting [3, 4] (for ξ → ±i∞).

5. Discussion

We have generalized the fusion procedure for open spin chains without crossing symmetry.
Furthermore, we have shown that even though the R-matrix does not have crossing symmetry
the transfer matrix satisfies a crossing property (2.24). We have applied these results to
diagonalize the transfer matrix via the analytical Bethe ansatz method. We have found explicit
expressions for the transfer matrix spectrum (4.40) and we have deduced the Bethe ansatz
equations (4.44), avoiding nesting. The main realization in this paper was the necessity of
the transfer matrix t̄ (λ) (2.25) in the derivation of the analytical Bethe ansatz. Indeed, it
was necessary to consider t̄ (λ) together with the usual transfer matrix in order to derive the
conditions that the eigenvalues should satisfy.

Here, we have considered the special case where the chain has a Uq(SU(N )) symmetry.
However, we believe that the previous analysis can be extended even in the case of the reduced
symmetry Uq(SU(l)) × Uq(SU(N − l)) × U(1) [26]. Moreover, the Bethe ansatz equations
are known for open spin chains with ‘soliton preserving’ boundary conditions. There is also
the case of ‘soliton non-preserving’ boundary conditions (see, e.g., [22, 27]) for which the
Bethe ansatz equations are not known. Using the analytical Bethe ansatz, one can presumably
derive the corresponding transfer matrix spectrum and the Bethe ansatz equations, avoiding
nesting. We hope to address these questions in a future work [28].
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[3] de Vega H J and González-Ruiz A 1993 Preprint LPTHE-PAR 93-38
[4] de Vega H J and González-Ruiz A 1994 Phys. Lett. B 332 123
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